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1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of 2. A geometric series has first term a, where a # 0, and common ratio r.
The sum 1o infinity of this series is 6 times the first term of the series.
Y 5
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B (a) Show that r = —
B ¢ (2)

giving each term in its simplest form. . _ - L
4) Given that the fourth term of this series is 62.5

(b) find the value of a.
(a+5) = af + 3aTh + (E)ab\:z {E)asbg @

(¢) find the difference between the sum to infinity and the sum of the first 30 terms.
giving vour answer to 3 significant figures.
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Figure 1

Figure 1 shows a sketch of part of the curve with equation y = (2x = 1). x = 0.5

The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis and the
lines with equations x = 2 and x = 10.

The table below shows corresponding vahies of x and y for v = J(2x — 1).
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(a) Complete the table with the values of v corresponding to x = 4 and x = 8.
(1

(b) Use the trapezium rule. with all the values of y in the completed table, to find an
approximate value for the area of R, giving your answer to 2 decimal places.

)

(¢) State whether vour approximate value in part (b) is an overestimate or an underestimate
for the area ol R.

Aren > %(z)[ﬁfl(\ﬁ-.‘hﬁ‘ *\KS)&-JT‘\) = 7_5_3‘(: “

)

O onders esnhmake, ‘\-mpe.z.\q wil\ be Helby
CATW_ |

blank
4, f(x) = —4x* + ax? + 9v — 18, where a is a constant.

Given that (x — 2) is a factor of f(x),

(a) find the value of a,

(2)
(b) factorise f{x) completely.

(3
(¢) find the remainder when {(x) is divided by (2x — 1).

(2)
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Figure 2

Figure 2 shows the shape ABCDEA which consisis of a right-angled triangle BCD joined
1o a sector ABDEA of a circle with radius 7 cm and centre B.

A, B and C lie on a straight line with A8 =7 cm.
Given that the size of angle ABD is exactly 2.1 radians.

(a) find, in cm. the length of the arc DEA.

2

(b find. in cim, the perimeter of the shape 4BCDEA. giving your answer
to 1 decimal place.
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Figure 3

Figure 3 shows a sketch of part of the curve (" with equation

1 s
y==x+-x, xeR

The curve € has a maximum turning point at the point 4 and a minimum turning point at

the origin ©).

The line { touches the curve  at the point 4 and cuts the curve € at the point B

The x coordinate of 4 is —4 and the x coordinate of B is 2.

"

The finite region R, shown shaded in Figure 3, is bounded by the curve C and the line /.

Use integration to find the arca of the {inite region .
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D Sin1©® = 4 SinZ20 -\

(i) Solve, for 0 < & < 180°. the equation

sin 20 B
(4sin260 1)

giving your answers (o | decimal place.

(3
(i) Solve, for 0 < x < 2. the equation
Ssinfx—2cosx—5=10
giving your answers to 2 dgcimal places.
(Solutions bused entirely on graphical or numerical methods are not acceptable.)
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. (i) Solve

57 =8

giving your answer 1o 3 significant figures.

(i) Use algebra to find the values of x for which
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Figure 4
Figure 4 shows the plan of a pool.

The shape of the pool ABCDEFA consists of a rectangle B 'EF joined to an equilateral
triangle BFA and a semi-circle CDE, as shown in Figure 4.

Given that AR = x metres. EF = v metres. and the area of the pool is 50 m,

(a) show that

50 x
v = = =(r+2V3)
X 8
(3)
(b) Hence show that the perimeter, I melres, of the pool is given by
100 x
P=—+"Ax+8-203)
X 4
(3)
(¢) Use calculus to find the minimum value of /., giving vour answer (o
3 significant figures.
(3)

(d) Justify, by further differentiation, that the value of P that you have found is a minimum.
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Question 9 continued
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10. The circle , with centre A, passes through the point 7 with coordinates (-9, 8)
and the point () with coordinates (15, -10).

Given that PQ is a diameter of the circle .

(a) find the coordinates of 4.

(2)
(b) find an equation for C.
(3)
A point R also lies on the circle €.
(Given that the length af the chord PR is 20 units,
(¢) find the length of the shorlest distance from A to the chord PR.
Give your answer as a surd in its simplest form.
(2)

(d) Find the size of the angle ARQ. giving vour answer to the nearest (.1 of a degree.

(15,-10)
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